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The probability of finding a nearest neighbor at some radial distance from a reference point in
many-particle systems is of fundamental importance in a host of fields in the physical as well as
biological sciences. We have derived exact analytical expressions for nearest-neighbor probability
functions for particles deposited on a line during a random sequential adsorption process for all
densities, i.e., up to the jamming limit. Using these results, we find the mean nearest-neighbor
distance X as a function of the packing fraction and discuss it in light of recent theorems derived for
general ergodic and isotropic packings of hard spheres.

PACS number(s): 02.50.—r, 05.20.—y, 61.20.—p

I. INTRODUCTION

There has been a resurgence of interest in nearest-
netghbor distribution functions of many-particle systems
since such knowledge is of basic importance in many
applications, including the study of liquids and amor-
phous solids [1-8], transport processes in heterogeneous
materials [9,10], and spatial patterns in biological sys-
tems [11]. Generally speaking, nearest-neighbor func-
tions characterize the probability of finding a nearest
neighbor at some distance from a reference point in the
many-particle system. From such functions one can de-
termine other quantities of fundamental interest, such as
the mean nearest-neighbor distance between particles.

Hertz [12] was apparently the first to obtain ex-
act expressions for nearest-neighbor functions. He did
so for a three-dimensional system of “point” particles,
i.e., spatially uncorrelated (Poisson distributed) parti-
cles. Deriving analytical expressions for finite-sized inter-
acting particles is considerably more complex. Torquato,
Lu, and Rubinstein (TLR) [4] derived exact analyti-
cal series representations of nearest-neighbor functions
for isotropic distributions of identical interacting D-
dimensional spheres at number density p in terms of mul-
tidimensional integrals over the infinite set of n-particle
probability density functions pi1,p2,...,pn (n — o00).
Generally, this series cannot be summed exactly since
such complete knowledge of the p, is usually not avail-
able.

For an equilibrium ensemble of hard rods (D = 1), the
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pr for any n are known exactly, permitting an exact eval-
uation of the nearest-neighbor functions. In the case of
equilibrium ensembles of hard disks (D = 2) and hard
spheres (D = 3), accurate approximations have been
developed recently that apply up to the random close-
packing density [7,8].

To our knowledge, nearest-neighbor expressions have
yet to be obtained for any nonequilibrium ensemble. In
this paper we derive exact expressions for the nearest-
neighbor functions of systems of hard rods deposited on
a line during a random sequential adsorption (RSA) pro-
cess [13-19]. In this process, also known as the car park-
ing problem, rods are placed randomly and sequentially
on a line such that each rod is adsorbed if it does not over-
lap any of the rods already adsorbed. The geometrical
blocking effects and the irreversible nature of the pro-
cess result in structures that are distinctly different from
corresponding equilibrium configurations, except for low
densities [14]. Near the jamming limit (the final state
of this process whereby no particles can be added), the
kinetics follows an algebraic power law [17].

It will be of interest to examine our exact results in
light of some recent general theorems [7] that suggest
that the functional nature of the nearest-neighbor func-
tions for RSA particles should be surprisingly different
than for corresponding equilibrium particles. We note
that our exact one-dimensional results will aid in obtain-
ing approximate nearest-neighbor relations in higher di-
mensions.

In Sec. II, we define and discuss the nearest-neighbor
functions for systems of identical, interacting one-
dimensional rods in instances in which the reference point
is arbitrary (“void” quantities) and in which the reference
point is a rod center (“particle” quantities). In Sec. III,
we derive exact expressions for the void nearest-neighbor
functions for RSA rods. In Sec. IV, we obtain correspond-
ing results for the particle quantities and find the mean
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nearest-neighbor distance as well. In Sec. V, we graph-
ically present our analytical results and discuss them in
relation to the general theorems of Ref. [7]. Monte Carlo
simulations of the nearest-neighbor functions for RSA
rods are also carried out here. Finally, in Sec. VI, we
discuss our results.

II. NEAREST-NEIGHBOR FUNCTIONS

The nearest-neighbor distribution functions defined
here for identical rods in one dimension are a specializa-
tion of the general case of D-dimensional spheres defined
by TLR [4] and are of two primary types. The particle
distribution functions (denoted by a subscript P) refer
to nearest-neighbor quantities measured with respect to
an arbitrary rod center, while the void distribution func-
tions (denoted by a subscript V') refer to nearest-neighbor
quantities measured with respect to an arbitrary point in
the system. It should be noted that in the case of the void
quantities, the reference point can still lie within a rod.
The void functions are identical to those introduced by
Reiss, Frisch, and Lebowitz [20] in their scaled-particle
theory.

We define the nearest-neighbor functions Hy(p,
Ey(p), and Gy (p) for the void (particle) quantities as
follows:

Hy(r)dr (1)

is the probability that, at an arbitrary point in the sys-
tem, the center of the nearest particle lies at a distance
between r and r + dr;

Hp(r)dr (2)

is the probability that, at an arbitrary disk center in the

system, the center of the nearest disk lies at a distance
between r and r + dr;

By (r) 3)

is the probability of finding a region of length 2r (centered
at some arbitrary point) empty of rod centers;

Ep(r) (4)

is the probability of finding a region of length 2r (centered
at some arbitrary disk center) empty of rod centers;

2pGy (r) dr (5)

is the probability that, given a region of length 2r cen-
tered at an arbitrary point in the system that is empty
of rod centers, rod centers are contained in the shell of
thickness 2dr encompassing the region; and

2pGp(r)dr (6)

is the probability that, given a region of length 2r cen-
tered on a rod center that is empty of any other rod
centers, rod centers are contained in the shell of thick-
ness 2dr encompassing the region. The prefactor of 2

in front of Gy (r,t) and Gp(r,t) is the “surface area” of
the rod. Although we will be applying these definitions
to the case of RSA of hard rods, they are valid for any
distribution of hard rods of uniform size.

From the definitions given above, we can see that
Ey(py(r,t) is just the cumulative distribution function
associated with Hy (p)(r,t), so one can write

Ey@py(r,t) =1 —/ Hypy(y,t) dy. (7
0
Differentiating the above expression gives the expression

aEv(p) (T‘, t)

Hypy(r,t) = — or (8)

Finally, once one has Ey(p)(r,t) and Hy (p(r,t), one can
obtain Gy (p) via the relation

Hy py(r,t)
2pEy (p)(r,t)
Because of these relations, we will concentrate on evalu-

ating Ey (p)(r,t) and deriving expressions for Hy (p)(r,t)
and Gy (p)(r,t) from that.

9)

Gvpp) =

III. THEORY: VOID QUANTITIES

In order to derive expressions for the nearest-neighbor
void quantities for one-dimensional RSA, we must first
define a few preliminary expressions. Let n(h,t) be the
number density of gaps with length between h and h+dh
at dimensionless time t. Without loss of generality, we
will also assume the rods to have a diameter of unity.
Then, the total number density of gaps N (t) at time ¢ is
given by

N(t) = /0 = dhn(h,b). (10)

In one dimension, this must be equal to the number den-
sity of rods at time ¢, p(t).

The time evolution of n(h,t) is governed by a rate
equation that takes into account the destruction and cre-
ation of gaps of length h [15,19,21]. In the case of h < 1,
the gaps cannot be destroyed since a particle cannot be
added to the gap. Therefore, there is only a creation
term of the form

on(h,t)

ontht) o [7 awn,t)  (h<1).  (11)
ot h+1

For h > 1, gaps can be both created and destroyed and
the rate can be written as

on(h,t) n = A (k!
et = —(h-1) (h,t)+2/h+1dh (W,8) (h>1).

(12)

In order to solve these equations for n(h,t) as a func-
tion of h only, we can introduce the function
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n(h,t) = exp[—(h — 1)t](H?) (13)

for h > 1, which after insertion in Eq. (12) and proper ac-
count of the initial condition leads to the known solution
(15]

H(t) = t* exp [—2 /t 1-e™ d'u.] (14)
o u
— exp {20y - Ei(-1)]}, (15)

where Ei(t) is the exponential integral of ¢ and v =
0.57721... is Euler’s constant.

For h < 1, the gap distribution function is then given
by

H(t ) —ht" (16)

n(hyt) = 2 / dt’
The density of adsorbed rods can then be calculated
from Eq. (10) by substituting the expression for n(h,t)
in Eq. (16) and integrating with respect to h to give

p(t) = / a 25 ®), (17)

Knowledge of the gap distribution function allows us to
calculate the void quantities. Let us first look at Ey (r, t).
For r < 1/2, the only region prohibited will be those
regions that are within a distance r from each rod center.
Since r < 1/2, we do not have to worry about multiple
overlaps and we can immediately write down

By(rt)=1-2rp(t)  (r<1/2), (18)
Hy (r,t) = 2p(t) (r <1/2), (19)
vt = g (<1/2). (20)

In the case of » > 1/2, we know that Ey(r,t) is the
probability of finding a void of radius r (or diameter 2r)
empty of rod centers. Thus we must consider all gaps
between particle centers that are larger than 2r — 1. The
total contribution of a gap of size h will be A — (2r — 1)
and the total probability of finding a void of radius r can
be written

By (rt) = / T h—@r—Dlnht)dh. (1)

2r—1

In the case of » > 1 we can substitute in the expression
for n(h,t) in terms of H(t) to get

By (r,t) = /
2r—1

= H(t)/ ze~[E+2r DIt gy (23)
0

= HE) 21y
= =

[h—(2r —1)]H(@t)e " Vtgn  (22)

(r>1). (24)
Using Egs. (8) and (9), we can now also write

Hy(r,t) = _%Bv _ 2——Ht(t)e-2("—1)t

o (r>1) (25)

and

_ Hy(r,t) _
Gv(rd) = BBy ) ~ 5D

In the case of 1/2 < r < 1, the integrals can no longer
be done analytically due to the nature of n(h,t). How-
ever, the expressions can be written down fairly simply
in terms of integrals to give

(26)

By(rt) = 1-2(1 - )p(?)
 H(t)
/Odt [

_ e—(2r—l)t’]

(1/2<r<1), (27)

Hy(r,t) = 2/ dt’ H(t )( —(@r-1t' _q)

(1/2<r<1), (28)

with Gy (r,t) readily determined from FEy(r,t) and
Hy (r,t).

IV. THEORY: PARTICLE QUANTITIES

For 0 < r <1, we have simply

Ep(r,t) =1, (29)
Hp(r,t) =0, (30)
Gp(r,t) =0, (31)

reflecting the impenetrability of the particles. In order to
derive expressions for the particle nearest-neighbor func-
tions for » > 1, we must introduce the two-gap distribu-
tion function n(h,h’,t), which is defined as the number
density of neighboring gaps of size h and h'. Clearly, we
have

n(h,t) = /0 = dh n(h, 1 2). (32)

Using the n(h,h',t) defined in this manner, we can now
write

Bp(r,t) = p—(15 / i dh / i AW n(h, k1) (33)

when » > 1.
We can absorb the h (or k') dependence in n(h, k', t) in

a manner similar to that for n(h,t) by using the following
ansatz:

H(h;1,t)e~®*' -1t (R <1, B’ >1) (34)

n(h,h,t) = H(R;1,t)e”*=D (R >1, K <1) (35)
T H(1,t)e=(r+h'=2t (b > 1, A’ >1) (36)
H(h,h';1,t) (R<1, W <1). (37)
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This follows the notations used in [21], where the 1 in the
argument denotes a one-particle cluster. With the gap
size dependence taken into account, we can write down
the time evolution equation for n(h,h',t) as [21]

%”(h, R t) = —[k(h) + k(h')In(h, k', )
+ / dh' n(h" 1, t)
h+1

+/ dh" n(h,h",t) + n(h + A’ + 1,1),
h'+1

(38)
where

kz{h—l, h>1 (39)

0, h<1.
For r > 2, we know that A > 1, ' > 1, and Eq. (38)
reduces to

7]

SHWH =HO ™ +2BWL0 -, (40)

which can be integrated to give

t
H(h,h’;l;t):/ dtlH(tl)e<-h+h'>‘1+/ dty H(t) S
0

-—htl 1
dt2

453
1—e2
H(1;t) = H(t)—T——. (41)
Using Eq. (33), we can now write down

1 H(1,t) -2
Ep(?", t) - (t) tz (7‘ Z 2)’ (42)

2t H(l t) —2(r 2)t
HP(T7 t) = (t) tz (‘I‘ Z 2)’ (43)
Go(rt) = —BP0D __ t s ()

2p(t)Ep(r,t)  p(t)

So, for r > 2, Gp(r,t)
.

1a order to solve the case in which 1 < r < 2, we must
solve Eq. (38) in the cases where h or A’ can be less than
1. These can be written in terms of quadratures as

= Gy (r,t) and is independent of

H(h,1;t) = H(t)——_ (-t

1-h

H(?)

x / dty /EE) (1 — e~21)e0Pt (45)

and

—h t1 133 1
dt,

— e~ 22 toet2
e + 2tze VH(E)e
2t,

(46)

/ dt: VH() S

— e 2t2 toet2 ,
e + 2tze r———H(tz)e_h ts.
2ty

Using these expressions, the results for 1 < r < 2 can now be written down as

1 1 1 oo oo oo
p(t)Ep(r,t) = / / dhdh n(h, k',t) + 2 / dh / dh n(h, 1, t) + / / dh dh' n(h, 1, t)
r—1Jr—-1 r—1 1 1 1

t
/ at, 2t H(t1)
o 12

1

[ —2(1‘—1)t1 _ (1 _ e—-2t1) (

1

From this expression, we also have
7]
p(t)Hp(r,t) = —p(t) 5 Ep(r,?)

t
/ dtlHt(tl) [ —2(r—1)t, +(1
0

1

t t1
+2 / dt, Y17 If(tl)e‘““’“ / dtz v/H(t2) (
0 1 0 .

_ e——2t1)

1— e—-(r-—-l)tl
t )]

t — e—(r=1t1 t t1 -2ty —t
o () D [
0 1 0

) ().

2t

e—»(r——l)t1 ]

131
e~ (r—1tz _ o—t2 1—e 22 4 2tye b2
ts 2,

t e (r—1)t, ty 2ty —ts
-2 dt, 16—— dt, /H(tz)e—(‘r—l)tz 1—e + 2tqe (48)
0 t 0 2t5
and
1 Hp(rt

T(t) Ep(r,t)’
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Finally, knowledge of Ep(r,t) allows us to calculate the mean nearest-neighbor distance A(t) as in Ref. [4] according

to the relation

Ay =1+ /00 dr Ep(r,t). (50)

We emphasize that A(t) is not the mean distance between the successive centers on the line, i.e.,

At) £ 1+

Substitution of expression (47) into (50) yields

_ 1, Q- H@E 1 [
At) =1+ + )/dtl

4t3p(t) p(t

o f g [

e—tz +e—t2 (

15

At small times and densities [p(t) ~ t—t2], this reduces
to
A(t) =

+ 3+ 0(pO) = 5 +1+0(5). (52)

()

This has the same leading-order low-density behavior as
the equilibrium hard-rod mean nearest-neighbor distance
Aeq at number density p, where

1
Aeq 2p ( )

for all values of p.

V. DISCUSSION OF RESULTS AND
COMPARISON TO COMPUTER SIMULATIONS

In this section, we present graphically our analytical
results for the nearest-neighbor functions. These results
are compared to corresponding Monte Carlo simulations,
which are carried out here. Our results are also discussed
in light of some recent general theorems [7].

The computer simulations were carried out using sys-
tems of 10° particles on a unit line with periodic bound-
ary conditions. The particle radius was determined by
the volume fraction of particles desired. The results were
averaged over 2000 different samples for volume fractions
of 0.5, 0.6, and 0.72 corresponding to a wide range of
times in the RSA process. A smaller number of runs
were also done at p = 0.747 in order to obtain results
closer to the jamming limit.

A. Void quantities

The results for Hy(r,t) for a wide range of volume
fractions are shown in Fig. 1. The results for the simula-

1—p(t)

p(t)

PR

—e 22 4 ot,et

2t,

1—e

—t 1—e (t1+t2)
—_— = 51
n) - ()] 2

tion data match the theoretical curves almost perfectly,
with the difference being smaller than the errors asso-
ciated with the simulation data. The values of Ev (r,t)
(Fig. 2) show a similar correspondence, confirming the
theoretical expressions. The graph of Gy (r,t) (Fig. 3),
although simply obtained from Evy (r,t) and Hy (r,t), is
insightful because it shows that Gy (r,t) is indeed con-
stant for values of r > 1. The curve in the computer
simulation data for Gy (r,t) > 2 is due to the fact that
the value of Ey (r,t) is so small in that range that we
were unable to get good enough statistics to calculate an
accurate value of Gy (r,t).

15 ; —
| ® p(t) = 0.5 (sim.)
N = p(t) = 0.6 (sim.)
\ * p(t) =0.72 (sim.)
X p(t) = 0.5 (theor.)
).k ——- p(t) = 0.6 (theor.)
1.0 '

0.72 (theor.) 1

. e =

FIG. 1. Computer simulation data and analytical expres-
sions for Hy (r,t) for various values of p(t).
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0.0 D 0.0 |
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FIG. 2. Computer simulation data and analytical expres-

sions for Ev (r,t) for various values of p(t).

Fig. 6 and are even more interesting. For long times
(large values of p) there is an initial downward curvature

at 7 = 1. This can be predicted by looking at the value

B. Particle quantities

of 8Gp(r,t)/Or for r = 1*. First, we can write

OGp (’I‘, t) _
or

1

" 2p(t)Ep(r,t)?

X{[Hp(r, t)]2 + EP(T’ t)H};(’I‘, t)}

The results for Hp(r,t) and Ep(r,t) are shown in
Figs. 4 and 5, respectively. These show a clear match
with the theory. The results for Gp(r,t) are shown in

= p(t) = 0.6 (sim.)

* p(t) =0.72 (sim.)
p(t) = 0.5 (theor.)

——~ p(t) = 0.6 (theor.)

---- p(t) =0.72 (theor.)

25

FIG. 4. Computer simulation data and analytical expres-
sions for Hp(r,t) for various values of p(t).

For r = 1%, knowing that

Ep(r = 1+) =1,

—p(t) OHp(r = 1+,t)

t o H(t
p(t)Hp(r =1%) = 4/ dtIL)—,
0 131
we can calculate

(55)
(56)

(54)

20.0 T 3
® p(t) = 0.5 (sim.)
= p(t) = 0.6 (sim.)
* p(t) =0.72 (sim.) .
p(t) =0.5 (theor.)  s-e-e-o- 2 _______4
15.0 - ——- p(t) = 0.6 (theor.) / 1
---- p(t) =0.72 (theor.) /
b
> 10.0 /
(0] P
/‘/
/‘/
50 e 1
J Le
._‘_.__.__.—J+I——I+-—I-—I——I——I—|
- - ¥ 3
L
0.0 :
0.5 1.0
/o

FIG. 3. Computer simulation data and analytical expres-

15

sions for Gy (r,t) for various values of p(t).

FIG. 5. Computer simulation data and analytical expres-

= G/tdtlH(tl) +4/tdt1——“’H(tl)

t1 _ p—2ty —t2
% / dtz \/H_(tz—) (1 e + 2tze
0

or

ty

57
) )
1.0 T !
\
\ ® p(t) = 0.5 (sim.)
o8 | \ = p(t) = 0.6 (sim.)
E * u\ ¢ p(t) =0.72 (sim.)
| \ —— p(t) = 0.5 (theor.)
| — — - p(t) = 0.6 (theor.)
o6 .\ -~~~ p(t) = 0.72 (theor.)
\ \.
a ‘ \
w N -
A
0.4 x\
« LN
e \\
02 ‘e |
. S - \\.\-\
0\.\ L
*
] ey - ;
00 ® b
1.0 15 20

sions for Ep(r,t) for various values of p(t).
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20.0 T T
L

® p(t) = 0.5 (sim.)
| = p(t) = 0.6 (sim.)
P * p(t) = 0.72 (sim.)
I
i

B
/?00‘0 * L0l

p(t) = 0.5 (theor.)
— — - p(t) = 0.6 (theor.) !
---- p(t)=0.72 (theor.)

/
i
i
'

» 1
,

'
| /

| »
L ’
/
4
/
-

23 1
- *
- - - ..
- (] [
LA SPUNGDUDRPERER e 4 -

-
- oo 000000000

1.0 1.5 2.0 25
r'c

FIG. 6. Computer simulation data and analytical expres-
sions for Gp(r,t) for various values of p(t).

to give

aGP(’I' = 1+,t)
or

= .27:55{(4/; dt, Ht(ltl))z — 6p(t) /OtdtlH(tl)

t1 1— —2t2 2t —t2
x / dts H(tz)( et )} (58)
0 2

For long times, the dominant term will be the second
term in the curly brackets, which leads to
0Gp(r =17,1) _3e*z7t
or p(c0)? ™

(59)

So, not only does the slope become negative, but as
t — oo, it becomes infinitely negative. Also, for long
times Gp(17) ~ Int and Gp(r > 2) ~ t, so Gp(r,t)
must have a minimum between » = 1 and r = 2 for large
enough times. The discrepancy between the two curves
in Fig. 6 for r > 2 is due to the fact that the bin widths
had to be chosen large enough for there to be a statisti-
cally significant amount of data and this width was large
enough for the value of Evy (r,t) to change significantly
within the bin.

The above minimum can also be predicted from The-
orem 1 of [7], which states that for any ergodic ensem-
ble of isotropic packings of identical D-dimensional hard
spheres in which Gp(1*) < Gp(r), for 1 < r < oo,

A<1 !

<1 DamG(ih) 0

As t — oo, Gp(1*) — oo as Int and so the bound im-

1.2 T

—— 2p((MY) -1) TN
——- (G, (1"t) (Theorem 1) N~
02 | ---- 1-p(t) (Theorem 2) v

|

Scaled theor. A(t) compared to bounds

1 (Theorem 3)

0.0 L 1
0.0 0.2 0.4 0.6 0.8

p(t)

FIG. 7. Comparison between the RSA expression for
2p(t)[A(t) —1] and the various bounds considered in Theorems
1-3 of Ref. [7] [1/Gp(17,t), 1 — p(t), and 1] as a function of
p(t). The data have been shifted and rescaled as described in
the text.

plies that A — 1. However, we know that for RSA in one
dimension A is strictly larger than 1 due to the fact that
there will always be permanent gaps in the system even
at the jamming limit. This can be seen in Fig. 7 since
the value of 2p(¢)A — 1 does not go to zero at jamming
[p(t) = 0.747]. The data in Fig. 7 have been shifted by
1 and scaled by a factor of 2p(t) in order to remove the
trivial factor of 1 that occurs in Eq. (50) and to elim-

10.0 (— T T T T
——— p=0.747 (rsa) /

——- p=0.747 (eq.) /

8.0

2.0 - E

1.0 1.2 1.4 1.6 1.8 2.0
r'c

FIG. 8. Comparison of RSA and equilibrium expressions
for Gp(r,t) near the RSA jamming limit. In the RSA case,
the value of A is greater than 1+ (1 — p)/2p, so we know that
even though Gp(r,t) > (1 — p)~' ~ 3.9 when » — 1% and
r = 2, it must become less than that for values of r between
1 and 2.
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inate the singularity at p(t = 0) = 0. Since the RSA
process produces rod configurations that are ergodic and
isotropic, the condition that Gp(1*) < Gp(r) must be
violated at large enough times, resulting in a minimum
in Gp(r), as is indeed observed (see Fig. 6).

A similar result can be obtained by looking at Theo-
rem 2 from that same paper [7]. This theorem states that
for any ergodic ensemble of isotropic packings of identical
D-dimensional hard spheres in which (1 — p)~! < Gp(r)
for 1 <r < oo,

A 1-p

<1+ D20, (61)
For large enough values of p for one-dimensional RSA
(see Fig. 7) this condition is violated, implying that
Gp(r) < (1 — p)~! for some values of r. Theorem 2
gives an idea of the magnitude of the drop in Gp(r). At
jamming, p < 1, so Gp(r) will stay finite for some values
of 7 between 1 and 2, while Gp(1) and Gp(2) become
infinite. Figure 8 shows an example of this phenomena
for very high densities. Note, finally, that, as required
by Theorem 3 of [7], A is always less than 1+ 1/2p (see
Fig. 7).

VI. CONCLUSION

We have derived analytic expressions for a number of
nearest-neighbor distribution functions associated with
RSA in one dimension. Computer simulation results
agree well with these formulas and the detailed compari-
son between simulation data and exact solutions provides
an interesting calibration before undertaking a numeri-
cal study of 2D and 3D systems for which no analytical
solutions are known. The results are also used to show
the importance of previous results [7] related to general
ergodic and isotropic packings of hard spheres.
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